MAYBE 18.822 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ IFR

mainModule Main
  ((enumFrom :: Ratio Int  ->  [Ratio Int]) :: Ratio Int  ->  [Ratio Int])

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero

is transformed to
primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y))
primDivNatS0 x y False = Zero

The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x

is transformed to
primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y)
primModNatS0 x y False = Succ x



↳ HASKELL
  ↳ IFR
HASKELL
      ↳ BR

mainModule Main
  ((enumFrom :: Ratio Int  ->  [Ratio Int]) :: Ratio Int  ->  [Ratio Int])

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Main
  ((enumFrom :: Ratio Int  ->  [Ratio Int]) :: Ratio Int  ->  [Ratio Int])

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
gcd' x 0 = x
gcd' x y = gcd' y (x `rem` y)

is transformed to
gcd' x xz = gcd'2 x xz
gcd' x y = gcd'0 x y

gcd'0 x y = gcd' y (x `rem` y)

gcd'1 True x xz = x
gcd'1 yu yv yw = gcd'0 yv yw

gcd'2 x xz = gcd'1 (xz == 0) x xz
gcd'2 yx yy = gcd'0 yx yy

The following Function with conditions
gcd 0 0 = error []
gcd x y = 
gcd' (abs x) (abs y)
where 
gcd' x 0 = x
gcd' x y = gcd' y (x `rem` y)

is transformed to
gcd yz zu = gcd3 yz zu
gcd x y = gcd0 x y

gcd0 x y = 
gcd' (abs x) (abs y)
where 
gcd' x xz = gcd'2 x xz
gcd' x y = gcd'0 x y
gcd'0 x y = gcd' y (x `rem` y)
gcd'1 True x xz = x
gcd'1 yu yv yw = gcd'0 yv yw
gcd'2 x xz = gcd'1 (xz == 0) x xz
gcd'2 yx yy = gcd'0 yx yy

gcd1 True yz zu = error []
gcd1 zv zw zx = gcd0 zw zx

gcd2 True yz zu = gcd1 (zu == 0) yz zu
gcd2 zy zz vuu = gcd0 zz vuu

gcd3 yz zu = gcd2 (yz == 0) yz zu
gcd3 vuv vuw = gcd0 vuv vuw

The following Function with conditions
absReal x
 | x >= 0
 = x
 | otherwise
 = `negate` x

is transformed to
absReal x = absReal2 x

absReal1 x True = x
absReal1 x False = absReal0 x otherwise

absReal0 x True = `negate` x

absReal2 x = absReal1 x (x >= 0)

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
reduce x y
 | y == 0
 = error []
 | otherwise
 = x `quot` d :% (y `quot` d)
where 
d  = gcd x y

is transformed to
reduce x y = reduce2 x y

reduce2 x y = 
reduce1 x y (y == 0)
where 
d  = gcd x y
reduce0 x y True = x `quot` d :% (y `quot` d)
reduce1 x y True = error []
reduce1 x y False = reduce0 x y otherwise



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ LetRed

mainModule Main
  ((enumFrom :: Ratio Int  ->  [Ratio Int]) :: Ratio Int  ->  [Ratio Int])

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
reduce1 x y (y == 0)
where 
d  = gcd x y
reduce0 x y True = x `quot` d :% (y `quot` d)
reduce1 x y True = error []
reduce1 x y False = reduce0 x y otherwise

are unpacked to the following functions on top level
reduce2D vux vuy = gcd vux vuy

reduce2Reduce0 vux vuy x y True = x `quot` reduce2D vux vuy :% (y `quot` reduce2D vux vuy)

reduce2Reduce1 vux vuy x y True = error []
reduce2Reduce1 vux vuy x y False = reduce2Reduce0 vux vuy x y otherwise

The bindings of the following Let/Where expression
gcd' (abs x) (abs y)
where 
gcd' x xz = gcd'2 x xz
gcd' x y = gcd'0 x y
gcd'0 x y = gcd' y (x `rem` y)
gcd'1 True x xz = x
gcd'1 yu yv yw = gcd'0 yv yw
gcd'2 x xz = gcd'1 (xz == 0) x xz
gcd'2 yx yy = gcd'0 yx yy

are unpacked to the following functions on top level
gcd0Gcd'1 True x xz = x
gcd0Gcd'1 yu yv yw = gcd0Gcd'0 yv yw

gcd0Gcd'2 x xz = gcd0Gcd'1 (xz == 0) x xz
gcd0Gcd'2 yx yy = gcd0Gcd'0 yx yy

gcd0Gcd' x xz = gcd0Gcd'2 x xz
gcd0Gcd' x y = gcd0Gcd'0 x y

gcd0Gcd'0 x y = gcd0Gcd' y (x `rem` y)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
HASKELL
                  ↳ NumRed

mainModule Main
  ((enumFrom :: Ratio Int  ->  [Ratio Int]) :: Ratio Int  ->  [Ratio Int])

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
HASKELL
                      ↳ Narrow
                      ↳ Narrow

mainModule Main
  (enumFrom :: Ratio Int  ->  [Ratio Int])

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(vuz31000)) → new_primMulNat(vuz31000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(vuz6700), Succ(vuz150)) → new_primPlusNat(vuz6700, vuz150)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNatS(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS(vuz1090, vuz1100)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'15(vuz151, vuz152) → new_gcd0Gcd'17(new_primMinusNatS0(Succ(vuz151), vuz152), vuz152)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'11(vuz148, vuz149) → new_gcd0Gcd'1(new_primMinusNatS0(Succ(vuz148), vuz149), vuz149)
new_gcd0Gcd'1(Succ(Zero), Zero) → new_gcd0Gcd'1(new_primMinusNatS0(Zero, Zero), Zero)
new_gcd0Gcd'1(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'17(Succ(Zero), Zero) → new_gcd0Gcd'17(new_primMinusNatS0(Zero, Zero), Zero)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'10(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'13(Neg(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'1(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'18(Succ(Zero), Zero, vuz188) → new_gcd0Gcd'18(new_primMinusNatS0(Zero, Zero), Zero, new_primMinusNatS0(Zero, Zero))
new_gcd0Gcd'13(Pos(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'12(vuz157, vuz158) → new_gcd0Gcd'13(Pos(Succ(vuz158)), vuz157)
new_gcd0Gcd'18(Succ(Zero), Succ(vuz1870), vuz188) → new_gcd0Gcd'111(Zero, Succ(vuz1870))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'13(Neg(Succ(Zero)), Zero) → new_gcd0Gcd'17(new_primMinusNatS0(Zero, Zero), Zero)
new_gcd0Gcd'111(vuz200, vuz201) → new_gcd0Gcd'13(Neg(Succ(vuz201)), vuz200)
new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'13(Pos(Succ(Zero)), Zero) → new_gcd0Gcd'1(new_primMinusNatS0(Zero, Zero), Zero)
new_gcd0Gcd'1(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 5 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
QDP
                                  ↳ Narrowing
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'1(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'12(vuz157, vuz158) → new_gcd0Gcd'13(Pos(Succ(vuz158)), vuz157)
new_gcd0Gcd'13(Pos(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'11(vuz148, vuz149) → new_gcd0Gcd'1(new_primMinusNatS0(Succ(vuz148), vuz149), vuz149)
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)
new_gcd0Gcd'1(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'1(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_gcd0Gcd'11(vuz148, vuz149) → new_gcd0Gcd'1(new_primMinusNatS0(Succ(vuz148), vuz149), vuz149) at position [0] we obtained the following new rules:

new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS0(x0, x1), Succ(x1))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
QDP
                                      ↳ DependencyGraphProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'1(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'13(Pos(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))
new_gcd0Gcd'1(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'12(vuz157, vuz158) → new_gcd0Gcd'13(Pos(Succ(vuz158)), vuz157)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)
new_gcd0Gcd'1(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'1(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                                          ↳ QDP
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'1(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ RuleRemovalProof
                                          ↳ QDP
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'1(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_gcd0Gcd'1(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'11(vuz132000, Zero)
new_gcd0Gcd'11(x0, Zero) → new_gcd0Gcd'1(Succ(x0), Zero)


Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_gcd0Gcd'1(x1, x2)) = x1 + x2   
POL(new_gcd0Gcd'11(x1, x2)) = 2 + 2·x1 + x2   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ RuleRemovalProof
QDP
                                                        ↳ PisEmptyProof
                                          ↳ QDP
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
QDP
                                            ↳ Instantiation
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'12(vuz157, vuz158) → new_gcd0Gcd'13(Pos(Succ(vuz158)), vuz157)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'13(Pos(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))
new_gcd0Gcd'10(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)
new_gcd0Gcd'1(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'1(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'12(vuz157, vuz158) → new_gcd0Gcd'13(Pos(Succ(vuz158)), vuz157) we obtained the following new rules:

new_gcd0Gcd'12(Zero, Succ(z0)) → new_gcd0Gcd'13(Pos(Succ(Succ(z0))), Zero)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
QDP
                                                ↳ DependencyGraphProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'12(Zero, Succ(z0)) → new_gcd0Gcd'13(Pos(Succ(Succ(z0))), Zero)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'13(Pos(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))
new_gcd0Gcd'10(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'1(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'12(Zero, Succ(vuz4200))
new_gcd0Gcd'1(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ QDPOrderProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)
new_gcd0Gcd'1(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'1(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( new_primMinusNatS0(x1, x2) ) =
/0\
\0/
+
/01\
\01/
·x1+
/00\
\00/
·x2

M( Succ(x1) ) =
/0\
\1/
+
/01\
\01/
·x1

M( Zero ) =
/0\
\0/

M( Pos(x1) ) =
/0\
\0/
+
/00\
\10/
·x1

Tuple symbols:
M( new_gcd0Gcd'10(x1, ..., x4) ) = 0+
[0,1]
·x1+
[0,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'11(x1, x2) ) = 0+
[0,1]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'1(x1, x2) ) = 0+
[1,0]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'12(x1, x2) ) = 0+
[1,0]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'13(x1, x2) ) = 0+
[0,1]
·x1+
[1,0]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
QDP
                                                        ↳ DependencyGraphProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'11(x0, Succ(x1)) → new_gcd0Gcd'1(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'10(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'11(vuz160, vuz161)
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
QDP
                                                            ↳ UsableRulesProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
QDP
                                                                ↳ QReductionProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
QDP
                                                                    ↳ NonInfProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [18] with the following steps:
Note that final constraints are written in bold face.


For Pair new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200) the following chains were created:




For Pair new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161) the following chains were created:




For Pair new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0)) the following chains were created:




For Pair new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [18]:

POL(Pos(x1)) = 0   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(c) = -1   
POL(new_gcd0Gcd'10(x1, x2, x3, x4)) = -1 + x1 - x3 + x4   
POL(new_gcd0Gcd'12(x1, x2)) = -1 + x1   
POL(new_gcd0Gcd'13(x1, x2)) = -1 - x1 + x2   

The following pairs are in P>:

new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
The following pairs are in Pbound:

new_gcd0Gcd'13(Pos(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'10(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))
There are no usable rules

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ NonInfProof
QDP
                                                                        ↳ DependencyGraphProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'12(Succ(vuz160), vuz161)
new_gcd0Gcd'12(Succ(z0), z1) → new_gcd0Gcd'13(Pos(Succ(z1)), Succ(z0))
new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ UsableRulesProof
                                                              ↳ QDP
                                                                ↳ QReductionProof
                                                                  ↳ QDP
                                                                    ↳ NonInfProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
QDP
                                                                            ↳ QDPSizeChangeProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'10(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'10(vuz160, vuz161, vuz1620, vuz1630)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
QDP
                                  ↳ Narrowing
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'15(vuz151, vuz152) → new_gcd0Gcd'17(new_primMinusNatS0(Succ(vuz151), vuz152), vuz152)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'18(Succ(Zero), Succ(vuz1870), vuz188) → new_gcd0Gcd'111(Zero, Succ(vuz1870))
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'111(vuz200, vuz201) → new_gcd0Gcd'13(Neg(Succ(vuz201)), vuz200)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'13(Neg(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_gcd0Gcd'15(vuz151, vuz152) → new_gcd0Gcd'17(new_primMinusNatS0(Succ(vuz151), vuz152), vuz152) at position [0] we obtained the following new rules:

new_gcd0Gcd'15(x0, Zero) → new_gcd0Gcd'17(Succ(x0), Zero)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
QDP
                                      ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'15(x0, Zero) → new_gcd0Gcd'17(Succ(x0), Zero)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Zero), Succ(vuz1870), vuz188) → new_gcd0Gcd'111(Zero, Succ(vuz1870))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'111(vuz200, vuz201) → new_gcd0Gcd'13(Neg(Succ(vuz201)), vuz200)
new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'13(Neg(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'17(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'15(x0, Zero) → new_gcd0Gcd'17(Succ(x0), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof
                                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'17(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'15(x0, Zero) → new_gcd0Gcd'17(Succ(x0), Zero)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ RuleRemovalProof
                                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'17(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'15(x0, Zero) → new_gcd0Gcd'17(Succ(x0), Zero)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_gcd0Gcd'17(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'15(vuz132000, Zero)
new_gcd0Gcd'15(x0, Zero) → new_gcd0Gcd'17(Succ(x0), Zero)


Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_gcd0Gcd'15(x1, x2)) = 2 + 2·x1 + x2   
POL(new_gcd0Gcd'17(x1, x2)) = x1 + x2   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ RuleRemovalProof
QDP
                                                        ↳ PisEmptyProof
                                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
QDP
                                            ↳ Instantiation
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'18(Succ(Zero), Succ(vuz1870), vuz188) → new_gcd0Gcd'111(Zero, Succ(vuz1870))
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'111(vuz200, vuz201) → new_gcd0Gcd'13(Neg(Succ(vuz201)), vuz200)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'13(Neg(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'111(vuz200, vuz201) → new_gcd0Gcd'13(Neg(Succ(vuz201)), vuz200) we obtained the following new rules:

new_gcd0Gcd'111(Zero, Succ(z0)) → new_gcd0Gcd'13(Neg(Succ(Succ(z0))), Zero)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
QDP
                                                ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'111(Zero, Succ(z0)) → new_gcd0Gcd'13(Neg(Succ(Succ(z0))), Zero)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Zero), Succ(vuz1870), vuz188) → new_gcd0Gcd'111(Zero, Succ(vuz1870))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'13(Neg(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ QDPOrderProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'13(Neg(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'13(Neg(Succ(Zero)), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/0\
\0/
+
/01\
\00/
·x1

M( new_primMinusNatS0(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( Succ(x1) ) =
/0\
\0/
+
/00\
\10/
·x1

M( Zero ) =
/1\
\0/

Tuple symbols:
M( new_gcd0Gcd'19(x1, ..., x4) ) = 0+
[0,0]
·x1+
[1,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'16(x1, x2) ) = 0+
[0,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'111(x1, x2) ) = 0+
[0,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'110(x1, x2) ) = 0+
[0,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'18(x1, ..., x3) ) = 0+
[0,0]
·x1+
[0,0]
·x2+
[0,0]
·x3

M( new_gcd0Gcd'15(x1, x2) ) = 0+
[0,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'13(x1, x2) ) = 0+
[1,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'14(x1, ..., x4) ) = 0+
[0,0]
·x1+
[0,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'17(x1, x2) ) = 0+
[0,0]
·x1+
[0,0]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
QDP
                                                        ↳ QDPOrderProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'17(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'16(Zero, Succ(vuz4200))
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/0\
\0/
+
/10\
\00/
·x1

M( new_primMinusNatS0(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( Succ(x1) ) =
/0\
\1/
+
/01\
\00/
·x1

M( Zero ) =
/0\
\0/

Tuple symbols:
M( new_gcd0Gcd'19(x1, ..., x4) ) = 0+
[0,0]
·x1+
[0,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'16(x1, x2) ) = 0+
[0,1]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'111(x1, x2) ) = 0+
[0,0]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'110(x1, x2) ) = 0+
[0,0]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'18(x1, ..., x3) ) = 0+
[0,0]
·x1+
[0,1]
·x2+
[0,0]
·x3

M( new_gcd0Gcd'15(x1, x2) ) = 1+
[0,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'13(x1, x2) ) = 0+
[1,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'14(x1, ..., x4) ) = 1+
[0,0]
·x1+
[0,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'17(x1, x2) ) = 1+
[0,0]
·x1+
[0,0]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
QDP
                                                            ↳ QDPOrderProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'17(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'15(vuz165, vuz166)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'15(vuz165, vuz166)
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/0\
\0/
+
/00\
\10/
·x1

M( new_primMinusNatS0(x1, x2) ) =
/0\
\0/
+
/01\
\01/
·x1+
/00\
\00/
·x2

M( Succ(x1) ) =
/0\
\1/
+
/01\
\01/
·x1

M( Zero ) =
/0\
\0/

Tuple symbols:
M( new_gcd0Gcd'19(x1, ..., x4) ) = 0+
[0,0]
·x1+
[0,1]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'16(x1, x2) ) = 0+
[0,1]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'111(x1, x2) ) = 0+
[0,0]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'110(x1, x2) ) = 0+
[0,0]
·x1+
[0,1]
·x2

M( new_gcd0Gcd'18(x1, ..., x3) ) = 0+
[0,0]
·x1+
[0,1]
·x2+
[0,0]
·x3

M( new_gcd0Gcd'15(x1, x2) ) = 0+
[0,1]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'13(x1, x2) ) = 0+
[0,1]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'14(x1, ..., x4) ) = 1+
[0,1]
·x1+
[0,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'17(x1, x2) ) = 0+
[0,1]
·x1+
[0,0]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
QDP
                                                                ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'15(x0, Succ(x1)) → new_gcd0Gcd'17(new_primMinusNatS0(x0, x1), Succ(x1))
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
QDP
                                                                    ↳ QDPOrderProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_gcd0Gcd'18(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'110(vuz18900, Zero)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'110(vuz203, vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'110(vuz203, vuz204)
The remaining pairs can at least be oriented weakly.

new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( Neg(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( new_primMinusNatS0(x1, x2) ) =
/0\
\1/
+
/10\
\00/
·x1+
/00\
\00/
·x2

M( Succ(x1) ) =
/0\
\1/
+
/11\
\00/
·x1

M( Zero ) =
/0\
\0/

Tuple symbols:
M( new_gcd0Gcd'19(x1, ..., x4) ) = 1+
[1,1]
·x1+
[0,0]
·x2+
[0,0]
·x3+
[0,0]
·x4

M( new_gcd0Gcd'16(x1, x2) ) = 0+
[0,0]
·x1+
[1,1]
·x2

M( new_gcd0Gcd'111(x1, x2) ) = 1+
[1,0]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'18(x1, ..., x3) ) = 0+
[1,0]
·x1+
[0,0]
·x2+
[0,0]
·x3

M( new_gcd0Gcd'110(x1, x2) ) = 0+
[1,1]
·x1+
[0,0]
·x2

M( new_gcd0Gcd'13(x1, x2) ) = 1+
[0,0]
·x1+
[1,0]
·x2

M( new_gcd0Gcd'14(x1, ..., x4) ) = 0+
[0,0]
·x1+
[1,1]
·x2+
[0,0]
·x3+
[0,0]
·x4


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
QDP
                                                                        ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'110(vuz197, vuz198) → new_gcd0Gcd'18(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
QDP
                                                                            ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
QDP
                                                                                ↳ QReductionProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
QDP
                                                                                    ↳ Instantiation
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'18(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'19(vuz18900, Succ(vuz1870), vuz18900, vuz1870) we obtained the following new rules:

new_gcd0Gcd'18(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'19(x0, Succ(x1), x0, x1)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
QDP
                                                                                        ↳ NonInfProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'19(x0, Succ(x1), x0, x1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [18] with the following steps:
Note that final constraints are written in bold face.


For Pair new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204) the following chains were created:




For Pair new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060) the following chains were created:




For Pair new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680) the following chains were created:




For Pair new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155)) the following chains were created:




For Pair new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200) the following chains were created:




For Pair new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0)) the following chains were created:




For Pair new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166) the following chains were created:




For Pair new_gcd0Gcd'18(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'19(x0, Succ(x1), x0, x1) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [18]:

POL(Neg(x1)) = x1   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(c) = -1   
POL(new_gcd0Gcd'111(x1, x2)) = -1 + x1   
POL(new_gcd0Gcd'13(x1, x2)) = -1 + x2   
POL(new_gcd0Gcd'14(x1, x2, x3, x4)) = x1 - x3 + x4   
POL(new_gcd0Gcd'16(x1, x2)) = -1 + x1   
POL(new_gcd0Gcd'18(x1, x2, x3)) = -1 + x1 + x2 - x3   
POL(new_gcd0Gcd'19(x1, x2, x3, x4)) = x1 - x3 + x4   

The following pairs are in P>:

new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
The following pairs are in Pbound:

new_gcd0Gcd'19(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'111(Succ(vuz203), vuz204)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'14(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'16(Succ(vuz165), vuz166)
new_gcd0Gcd'18(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'19(x0, Succ(x1), x0, x1)
There are no usable rules

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
                                                                                      ↳ QDP
                                                                                        ↳ NonInfProof
QDP
                                                                                            ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)
new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'111(Succ(z0), z1) → new_gcd0Gcd'13(Neg(Succ(z1)), Succ(z0))
new_gcd0Gcd'13(Neg(Succ(Succ(vuz132000))), Succ(vuz4200)) → new_gcd0Gcd'14(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_gcd0Gcd'16(vuz154, vuz155) → new_gcd0Gcd'18(Succ(vuz155), vuz154, Succ(vuz155))
new_gcd0Gcd'18(Succ(Succ(x0)), Succ(x1), Succ(Succ(x0))) → new_gcd0Gcd'19(x0, Succ(x1), x0, x1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
                                                                                      ↳ QDP
                                                                                        ↳ NonInfProof
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ AND
QDP
                                                                                                  ↳ QDPSizeChangeProof
                                                                                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'14(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'14(vuz165, vuz166, vuz1670, vuz1680)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ QReductionProof
                                                                                  ↳ QDP
                                                                                    ↳ Instantiation
                                                                                      ↳ QDP
                                                                                        ↳ NonInfProof
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ AND
                                                                                                ↳ QDP
QDP
                                                                                                  ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'19(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'19(vuz203, vuz204, vuz2050, vuz2060)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd2(Succ(vuz1250), Succ(vuz1290), vuz27) → new_gcd2(vuz1250, vuz1290, vuz27)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd20(Succ(vuz1230), Succ(vuz1160), vuz42) → new_gcd20(vuz1230, vuz1160, vuz42)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS1(Succ(vuz410), vuz8) → new_primDivNatS0(vuz410, vuz8)
new_primDivNatS0(Succ(vuz850), Succ(vuz86000)) → new_primDivNatS00(vuz850, vuz86000, vuz850, vuz86000)
new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS00(vuz109, vuz110, vuz1110, vuz1120)
new_primDivNatS(Succ(vuz850), Succ(vuz86000)) → new_primDivNatS00(vuz850, vuz86000, vuz850, vuz86000)
new_primDivNatS0(Succ(vuz850), Zero) → new_primDivNatS(vuz850, Zero)
new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Zero) → new_primDivNatS1(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110))
new_primDivNatS01(vuz109, vuz110) → new_primDivNatS1(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110))
new_primDivNatS00(vuz109, vuz110, Zero, Zero) → new_primDivNatS01(vuz109, vuz110)
new_primDivNatS(Succ(vuz850), Zero) → new_primDivNatS(vuz850, Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
QDP
                                  ↳ UsableRulesProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(vuz850), Zero) → new_primDivNatS(vuz850, Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
QDP
                                      ↳ QReductionProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(vuz850), Zero) → new_primDivNatS(vuz850, Zero)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
QDP
                                          ↳ QDPSizeChangeProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(vuz850), Zero) → new_primDivNatS(vuz850, Zero)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
QDP
                                  ↳ QDPOrderProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS1(Succ(vuz410), vuz8) → new_primDivNatS0(vuz410, vuz8)
new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS00(vuz109, vuz110, vuz1110, vuz1120)
new_primDivNatS0(Succ(vuz850), Succ(vuz86000)) → new_primDivNatS00(vuz850, vuz86000, vuz850, vuz86000)
new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Zero) → new_primDivNatS1(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110))
new_primDivNatS01(vuz109, vuz110) → new_primDivNatS1(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110))
new_primDivNatS00(vuz109, vuz110, Zero, Zero) → new_primDivNatS01(vuz109, vuz110)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primDivNatS0(Succ(vuz850), Succ(vuz86000)) → new_primDivNatS00(vuz850, vuz86000, vuz850, vuz86000)
The remaining pairs can at least be oriented weakly.

new_primDivNatS1(Succ(vuz410), vuz8) → new_primDivNatS0(vuz410, vuz8)
new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS00(vuz109, vuz110, vuz1110, vuz1120)
new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Zero) → new_primDivNatS1(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110))
new_primDivNatS01(vuz109, vuz110) → new_primDivNatS1(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110))
new_primDivNatS00(vuz109, vuz110, Zero, Zero) → new_primDivNatS01(vuz109, vuz110)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primDivNatS0(x1, x2)) = 1 + x1   
POL(new_primDivNatS00(x1, x2, x3, x4)) = x1   
POL(new_primDivNatS01(x1, x2)) = x1   
POL(new_primDivNatS1(x1, x2)) = x1   
POL(new_primMinusNatS0(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
QDP
                                      ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS1(Succ(vuz410), vuz8) → new_primDivNatS0(vuz410, vuz8)
new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS00(vuz109, vuz110, vuz1110, vuz1120)
new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Zero) → new_primDivNatS1(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110))
new_primDivNatS01(vuz109, vuz110) → new_primDivNatS1(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110))
new_primDivNatS00(vuz109, vuz110, Zero, Zero) → new_primDivNatS01(vuz109, vuz110)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
QDP
                                          ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS00(vuz109, vuz110, vuz1110, vuz1120)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
QDP
                                              ↳ QReductionProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS00(vuz109, vuz110, vuz1110, vuz1120)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
QDP
                                                  ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS00(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS00(vuz109, vuz110, vuz1110, vuz1120)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primQuotInt(Succ(vuz6500), Succ(vuz150), vuz27) → new_primQuotInt(vuz6500, vuz150, vuz27)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primQuotInt0(Succ(vuz80), Succ(vuz7100), vuz42) → new_primQuotInt0(vuz80, vuz7100, vuz42)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ MNOCProof
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_numericEnumFrom(vuz3) → new_numericEnumFrom(new_ps(vuz3))

The TRS R consists of the following rules:

new_gcd217(vuz127, vuz131, vuz126, vuz130, vuz27) → new_gcd22(new_primPlusNat0(vuz127, vuz131), vuz27)
new_primPlusNat2(Zero) → Zero
new_gcd26(Succ(vuz1230), Zero, vuz42) → new_gcd27(Succ(vuz1230), vuz42)
new_primQuotInt3(Zero, Succ(vuz7100), vuz42) → new_primQuotInt7(Succ(vuz7100), new_gcd21(vuz7100, vuz42))
new_gcd0Gcd'118(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'118(vuz160, vuz161, vuz1620, vuz1630)
new_primQuotInt9(vuz67, vuz15, vuz68, vuz27) → new_primQuotInt7(new_primPlusNat0(vuz67, new_primMulNat0(vuz15)), new_reduce2D0(new_primPlusNat0(vuz67, new_primMulNat0(vuz15)), vuz27))
new_gcd22(Succ(vuz1180), Succ(vuz270)) → new_gcd0Gcd'116(vuz270, vuz1180)
new_gcd0Gcd'123(vuz151, vuz152) → new_gcd0Gcd'124(new_primMinusNatS0(Succ(vuz151), vuz152), vuz152)
new_gcd0Gcd'117(Neg(vuz1320), vuz420) → new_gcd0Gcd'124(vuz1320, vuz420)
new_ps(:%(vuz30, Neg(Zero))) → new_error0
new_gcd0Gcd'124(Succ(Zero), Zero) → new_gcd0Gcd'124(new_primMinusNatS0(Zero, Zero), Zero)
new_primMinusNatS0(Zero, Zero) → Zero
new_primDivNatS03(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS03(vuz109, vuz110, vuz1110, vuz1120)
new_primQuotInt7(vuz26, Neg(Zero)) → new_error
new_gcd0Gcd'122(Zero, vuz420) → Pos(Succ(vuz420))
new_gcd21(vuz7100, Succ(vuz420)) → new_gcd0Gcd'116(vuz420, vuz7100)
new_gcd0Gcd'127(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'123(vuz165, vuz166)
new_gcd27(Zero, Succ(vuz420)) → new_gcd0Gcd'125(vuz420)
new_gcd0Gcd'115(vuz200, vuz201) → new_gcd0Gcd'117(Neg(Succ(vuz201)), vuz200)
new_gcd213(vuz127, vuz15, vuz126, vuz27) → new_gcd217(vuz127, new_primMulNat0(vuz15), vuz126, new_primMulNat0(vuz15), vuz27)
new_primDivNatS02(Zero, Succ(vuz86000)) → Zero
new_gcd27(Succ(vuz1070), Succ(vuz420)) → new_gcd0Gcd'121(vuz420, vuz1070)
new_gcd0Gcd'121(vuz420, vuz1070) → new_gcd0Gcd'117(new_abs0(vuz1070), vuz420)
new_gcd0Gcd'127(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'123(vuz165, vuz166)
new_gcd0Gcd'112(Succ(Zero), Zero, vuz188) → new_gcd0Gcd'112(new_primMinusNatS0(Zero, Zero), Zero, new_primMinusNatS0(Zero, Zero))
new_primQuotInt5(vuz69, vuz8, vuz70, vuz42) → new_primQuotInt1(new_primPlusNat0(vuz69, new_primMulNat0(vuz8)), new_reduce2D(new_primPlusNat0(vuz69, new_primMulNat0(vuz8)), vuz42))
new_abs0(vuz6500) → Pos(Succ(vuz6500))
new_gcd0Gcd'119(vuz148, vuz149) → new_gcd0Gcd'122(new_primMinusNatS0(Succ(vuz148), vuz149), vuz149)
new_ps(:%(vuz30, Pos(Zero))) → new_error0
new_gcd22(Zero, Zero) → new_error
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)
new_primQuotInt4(Neg(vuz70), vuz8, vuz42) → new_primQuotInt2(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd25(vuz6500, Succ(vuz270)) → new_gcd0Gcd'121(vuz270, vuz6500)
new_gcd0Gcd'124(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'123(vuz132000, Zero)
new_gcd0Gcd'113(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'113(vuz203, vuz204, vuz2050, vuz2060)
new_primQuotInt3(Succ(vuz80), Zero, vuz42) → new_primQuotInt1(Succ(vuz80), new_reduce2D(Succ(vuz80), vuz42))
new_error0error([])
new_gcd0Gcd'127(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'126(Succ(vuz165), vuz166)
new_reduce2Reduce10(vuz14, vuz15, vuz27, vuz26, Zero) → new_error0
new_gcd216(Zero, Zero, vuz27) → new_gcd214(vuz27)
new_gcd0Gcd'114(vuz197, vuz198) → new_gcd0Gcd'112(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_primMulNat0(vuz8) → new_primPlusNat0(Zero, Succ(vuz8))
new_gcd0Gcd'118(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'119(vuz160, vuz161)
new_reduce2Reduce1(vuz7, vuz8, vuz42, vuz41, Succ(vuz430)) → :%(new_primQuotInt4(vuz7, vuz8, vuz42), new_primQuotInt1(vuz41, new_gcd210(vuz7, vuz8, vuz42)))
new_abs(vuz1180) → Pos(Succ(vuz1180))
new_reduce2D(vuz107, vuz42) → new_gcd27(vuz107, vuz42)
new_primQuotInt2(Succ(vuz710), vuz8, vuz72, vuz42) → new_primQuotInt3(vuz8, vuz710, vuz42)
new_gcd26(Zero, Succ(vuz1160), vuz42) → new_gcd21(vuz1160, vuz42)
new_gcd211(Neg(vuz140), vuz15, vuz27) → new_gcd213(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd211(Pos(vuz140), vuz15, vuz27) → new_gcd212(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd0Gcd'122(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'120(Zero, Succ(vuz4200))
new_gcd28(vuz114, vuz8, vuz113, vuz42) → new_gcd29(vuz114, new_primMulNat0(vuz8), vuz113, new_primMulNat0(vuz8), vuz42)
new_gcd0Gcd'124(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'126(Zero, Succ(vuz4200))
new_primDivNatS03(vuz109, vuz110, Zero, Succ(vuz1120)) → Zero
new_gcd215(vuz125, vuz129, vuz124, vuz128, vuz27) → new_gcd216(vuz125, vuz129, vuz27)
new_gcd0Gcd'122(Succ(Zero), Zero) → new_gcd0Gcd'122(new_primMinusNatS0(Zero, Zero), Zero)
new_gcd0Gcd'122(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'119(vuz132000, Zero)
new_primQuotInt2(Zero, vuz8, vuz72, vuz42) → new_primQuotInt1(Succ(vuz8), new_reduce2D(Succ(vuz8), vuz42))
new_gcd21(vuz7100, Zero) → new_abs(vuz7100)
new_primQuotInt7(vuz26, Pos(Succ(vuz11700))) → Neg(new_primDivNatS2(vuz26, vuz11700))
new_gcd27(Succ(vuz1070), Zero) → new_abs0(vuz1070)
new_primDivNatS02(Zero, Zero) → Succ(Zero)
new_gcd0Gcd'124(Zero, vuz420) → Pos(Succ(vuz420))
new_gcd216(Zero, Succ(vuz1290), vuz27) → new_gcd22(Succ(vuz1290), vuz27)
new_gcd26(Zero, Zero, vuz42) → new_gcd27(Zero, vuz42)
new_primPlusNat2(Succ(vuz1900)) → Succ(vuz1900)
new_gcd0Gcd'112(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'114(vuz18900, Zero)
new_primPlusNat1(Zero) → Succ(Zero)
new_gcd0Gcd'112(Succ(Zero), Succ(vuz1870), vuz188) → new_gcd0Gcd'115(Zero, Succ(vuz1870))
new_gcd210(Pos(vuz70), vuz8, vuz42) → new_gcd28(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd0Gcd'118(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'120(Succ(vuz160), vuz161)
new_primQuotInt6(Neg(vuz140), vuz15, vuz27) → new_primQuotInt9(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_primMulNat1(Zero) → Zero
new_primQuotInt7(vuz26, Pos(Zero)) → new_error
new_primDivNatS02(Succ(vuz850), Succ(vuz86000)) → new_primDivNatS03(vuz850, vuz86000, vuz850, vuz86000)
new_primPlusNat0(Succ(vuz6700), Succ(vuz150)) → Succ(Succ(new_primPlusNat0(vuz6700, vuz150)))
new_gcd0Gcd'127(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'127(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'116(vuz420, vuz7100) → new_gcd0Gcd'117(new_abs(vuz7100), vuz420)
new_primQuotInt3(Succ(vuz80), Succ(vuz7100), vuz42) → new_primQuotInt3(vuz80, vuz7100, vuz42)
new_gcd22(Zero, Succ(vuz270)) → new_gcd0Gcd'117(Neg(Zero), vuz270)
new_primDivNatS02(Succ(vuz850), Zero) → Succ(new_primDivNatS3(vuz850, Zero))
new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_gcd214(Succ(vuz270)) → new_gcd0Gcd'125(vuz270)
new_gcd0Gcd'112(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'113(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_primPlusNat0(Zero, Zero) → Zero
new_primDivNatS2(Zero, vuz8) → Zero
new_primQuotInt10(Zero, Zero, vuz27) → new_primQuotInt1(Zero, new_gcd214(vuz27))
new_gcd212(vuz125, vuz15, vuz124, vuz27) → new_gcd215(vuz125, new_primMulNat0(vuz15), vuz124, new_primMulNat0(vuz15), vuz27)
new_gcd27(Zero, Zero) → new_error
new_primQuotInt1(vuz41, Pos(Zero)) → new_error
new_gcd210(Neg(vuz70), vuz8, vuz42) → new_gcd23(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_primQuotInt7(vuz26, Neg(Succ(vuz11700))) → Pos(new_primDivNatS2(vuz26, vuz11700))
new_reduce2Reduce1(vuz7, vuz8, vuz42, vuz41, Zero) → new_error0
new_gcd26(Succ(vuz1230), Succ(vuz1160), vuz42) → new_gcd26(vuz1230, vuz1160, vuz42)
new_primQuotInt10(Succ(vuz6500), Zero, vuz27) → new_primQuotInt1(Succ(vuz6500), new_gcd25(vuz6500, vuz27))
new_primPlusNat1(Succ(vuz190)) → Succ(Succ(new_primPlusNat2(vuz190)))
new_primQuotInt8(Succ(vuz650), vuz15, vuz66, vuz27) → new_primQuotInt10(vuz650, vuz15, vuz27)
new_gcd0Gcd'118(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'119(vuz160, vuz161)
new_gcd216(Succ(vuz1250), Zero, vuz27) → new_gcd25(vuz1250, vuz27)
new_gcd24(vuz116, vuz123, vuz115, vuz122, vuz42) → new_gcd26(vuz123, vuz116, vuz42)
new_primMulNat1(Succ(vuz31000)) → new_primPlusNat1(new_primMulNat1(vuz31000))
new_primQuotInt3(Zero, Zero, vuz42) → new_primQuotInt1(Zero, new_reduce2D(Zero, vuz42))
new_primDivNatS3(vuz85, vuz8600) → new_primDivNatS02(vuz85, vuz8600)
new_gcd0Gcd'113(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'114(vuz203, vuz204)
new_reduce2Reduce10(vuz14, vuz15, vuz27, vuz26, Succ(vuz280)) → :%(new_primQuotInt6(vuz14, vuz15, vuz27), new_primQuotInt7(vuz26, new_gcd211(vuz14, vuz15, vuz27)))
new_ps(:%(vuz30, Neg(Succ(vuz3100)))) → new_reduce2Reduce10(vuz30, vuz3100, new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)))
new_primQuotInt1(vuz41, Neg(Succ(vuz10600))) → Neg(new_primDivNatS2(vuz41, vuz10600))
new_primQuotInt1(vuz41, Neg(Zero)) → new_error
new_primQuotInt6(Pos(vuz140), vuz15, vuz27) → new_primQuotInt8(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd0Gcd'125(vuz420) → new_gcd0Gcd'117(Pos(Zero), vuz420)
new_gcd0Gcd'124(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'127(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_errorerror([])
new_primDivNatS2(Succ(vuz410), vuz8) → new_primDivNatS02(vuz410, vuz8)
new_gcd0Gcd'113(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'114(vuz203, vuz204)
new_primQuotInt10(Zero, Succ(vuz150), vuz27) → new_primQuotInt7(Succ(vuz150), new_reduce2D0(Succ(vuz150), vuz27))
new_gcd29(vuz114, vuz121, vuz113, vuz120, vuz42) → new_gcd27(new_primPlusNat0(vuz114, vuz121), vuz42)
new_gcd22(Succ(vuz1180), Zero) → new_abs(vuz1180)
new_primDivNatS04(vuz109, vuz110) → Succ(new_primDivNatS2(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110)))
new_gcd25(vuz6500, Zero) → new_abs0(vuz6500)
new_gcd0Gcd'112(Zero, vuz187, vuz188) → Neg(Succ(vuz187))
new_gcd0Gcd'126(vuz154, vuz155) → new_gcd0Gcd'112(Succ(vuz155), vuz154, Succ(vuz155))
new_primQuotInt4(Pos(vuz70), vuz8, vuz42) → new_primQuotInt5(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd0Gcd'113(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'115(Succ(vuz203), vuz204)
new_primQuotInt10(Succ(vuz6500), Succ(vuz150), vuz27) → new_primQuotInt10(vuz6500, vuz150, vuz27)
new_primQuotInt8(Zero, vuz15, vuz66, vuz27) → new_primQuotInt7(Succ(vuz15), new_reduce2D0(Succ(vuz15), vuz27))
new_primQuotInt1(vuz41, Pos(Succ(vuz10600))) → Pos(new_primDivNatS2(vuz41, vuz10600))
new_gcd0Gcd'117(Pos(vuz1320), vuz420) → new_gcd0Gcd'122(vuz1320, vuz420)
new_gcd214(Zero) → new_error
new_primDivNatS03(vuz109, vuz110, Zero, Zero) → new_primDivNatS04(vuz109, vuz110)
new_gcd0Gcd'122(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'118(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_primPlusNat0(Zero, Succ(vuz150)) → Succ(vuz150)
new_primPlusNat0(Succ(vuz6700), Zero) → Succ(vuz6700)
new_gcd23(vuz116, vuz8, vuz115, vuz42) → new_gcd24(vuz116, new_primMulNat0(vuz8), vuz115, new_primMulNat0(vuz8), vuz42)
new_gcd0Gcd'120(vuz157, vuz158) → new_gcd0Gcd'117(Pos(Succ(vuz158)), vuz157)
new_reduce2D0(vuz118, vuz27) → new_gcd22(vuz118, vuz27)
new_gcd216(Succ(vuz1250), Succ(vuz1290), vuz27) → new_gcd216(vuz1250, vuz1290, vuz27)
new_primDivNatS03(vuz109, vuz110, Succ(vuz1110), Zero) → new_primDivNatS04(vuz109, vuz110)
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_ps(:%(vuz30, Pos(Succ(vuz3100)))) → new_reduce2Reduce1(vuz30, vuz3100, new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)))

The set Q consists of the following terms:

new_gcd0Gcd'117(Neg(x0), x1)
new_primQuotInt4(Neg(x0), x1, x2)
new_gcd22(Succ(x0), Zero)
new_gcd0Gcd'122(Succ(Succ(x0)), Zero)
new_primQuotInt1(x0, Neg(Succ(x1)))
new_primQuotInt8(Zero, x0, x1, x2)
new_primQuotInt10(Zero, Succ(x0), x1)
new_gcd0Gcd'113(x0, x1, Zero, Succ(x2))
new_gcd0Gcd'113(x0, x1, Succ(x2), Zero)
new_gcd0Gcd'123(x0, x1)
new_primQuotInt6(Neg(x0), x1, x2)
new_gcd27(Succ(x0), Zero)
new_gcd216(Succ(x0), Zero, x1)
new_primQuotInt1(x0, Neg(Zero))
new_gcd0Gcd'124(Zero, x0)
new_primPlusNat0(Zero, Succ(x0))
new_error
new_primPlusNat2(Zero)
new_primQuotInt3(Succ(x0), Succ(x1), x2)
new_primDivNatS03(x0, x1, Zero, Zero)
new_primQuotInt5(x0, x1, x2, x3)
new_gcd26(Zero, Succ(x0), x1)
new_primQuotInt10(Zero, Zero, x0)
new_gcd21(x0, Zero)
new_gcd0Gcd'112(Zero, x0, x1)
new_gcd0Gcd'126(x0, x1)
new_gcd29(x0, x1, x2, x3, x4)
new_gcd22(Zero, Succ(x0))
new_abs0(x0)
new_gcd22(Succ(x0), Succ(x1))
new_gcd0Gcd'112(Succ(Zero), Zero, x0)
new_gcd216(Succ(x0), Succ(x1), x2)
new_ps(:%(x0, Neg(Zero)))
new_gcd0Gcd'116(x0, x1)
new_gcd0Gcd'112(Succ(Succ(x0)), Succ(x1), x2)
new_gcd0Gcd'117(Pos(x0), x1)
new_primQuotInt3(Succ(x0), Zero, x1)
new_gcd0Gcd'122(Succ(Zero), Succ(x0))
new_gcd27(Zero, Succ(x0))
new_gcd0Gcd'121(x0, x1)
new_gcd23(x0, x1, x2, x3)
new_reduce2Reduce1(x0, x1, x2, x3, Succ(x4))
new_primPlusNat1(Zero)
new_primDivNatS02(Succ(x0), Zero)
new_reduce2D0(x0, x1)
new_gcd0Gcd'118(x0, x1, Zero, Zero)
new_primDivNatS03(x0, x1, Zero, Succ(x2))
new_reduce2Reduce1(x0, x1, x2, x3, Zero)
new_gcd213(x0, x1, x2, x3)
new_gcd0Gcd'124(Succ(Succ(x0)), Zero)
new_gcd210(Neg(x0), x1, x2)
new_gcd0Gcd'127(x0, x1, Zero, Zero)
new_gcd0Gcd'112(Succ(Zero), Succ(x0), x1)
new_gcd217(x0, x1, x2, x3, x4)
new_gcd0Gcd'127(x0, x1, Zero, Succ(x2))
new_gcd26(Zero, Zero, x0)
new_primQuotInt1(x0, Pos(Succ(x1)))
new_ps(:%(x0, Pos(Succ(x1))))
new_gcd0Gcd'120(x0, x1)
new_gcd0Gcd'122(Zero, x0)
new_ps(:%(x0, Neg(Succ(x1))))
new_primQuotInt6(Pos(x0), x1, x2)
new_gcd24(x0, x1, x2, x3, x4)
new_gcd26(Succ(x0), Succ(x1), x2)
new_gcd210(Pos(x0), x1, x2)
new_gcd28(x0, x1, x2, x3)
new_primQuotInt4(Pos(x0), x1, x2)
new_primQuotInt8(Succ(x0), x1, x2, x3)
new_primDivNatS03(x0, x1, Succ(x2), Succ(x3))
new_primQuotInt2(Zero, x0, x1, x2)
new_primMulNat1(Zero)
new_primMinusNatS0(Zero, Zero)
new_primQuotInt7(x0, Pos(Succ(x1)))
new_gcd216(Zero, Zero, x0)
new_gcd0Gcd'112(Succ(Succ(x0)), Zero, x1)
new_gcd26(Succ(x0), Zero, x1)
new_reduce2Reduce10(x0, x1, x2, x3, Zero)
new_primPlusNat1(Succ(x0))
new_reduce2D(x0, x1)
new_primDivNatS04(x0, x1)
new_gcd0Gcd'125(x0)
new_gcd27(Succ(x0), Succ(x1))
new_error0
new_primPlusNat2(Succ(x0))
new_primQuotInt1(x0, Pos(Zero))
new_gcd0Gcd'122(Succ(Succ(x0)), Succ(x1))
new_reduce2Reduce10(x0, x1, x2, x3, Succ(x4))
new_gcd0Gcd'124(Succ(Zero), Zero)
new_gcd27(Zero, Zero)
new_primPlusNat0(Zero, Zero)
new_gcd0Gcd'119(x0, x1)
new_primQuotInt3(Zero, Succ(x0), x1)
new_gcd21(x0, Succ(x1))
new_primMulNat1(Succ(x0))
new_primQuotInt7(x0, Neg(Succ(x1)))
new_primPlusNat0(Succ(x0), Zero)
new_gcd0Gcd'124(Succ(Zero), Succ(x0))
new_primQuotInt2(Succ(x0), x1, x2, x3)
new_gcd0Gcd'113(x0, x1, Succ(x2), Succ(x3))
new_gcd0Gcd'113(x0, x1, Zero, Zero)
new_primMulNat0(x0)
new_gcd214(Zero)
new_primQuotInt10(Succ(x0), Succ(x1), x2)
new_primQuotInt7(x0, Neg(Zero))
new_primQuotInt3(Zero, Zero, x0)
new_ps(:%(x0, Pos(Zero)))
new_gcd211(Neg(x0), x1, x2)
new_primMinusNatS0(Succ(x0), Zero)
new_primDivNatS02(Zero, Zero)
new_primQuotInt10(Succ(x0), Zero, x1)
new_gcd0Gcd'114(x0, x1)
new_gcd216(Zero, Succ(x0), x1)
new_primDivNatS2(Succ(x0), x1)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_gcd0Gcd'118(x0, x1, Succ(x2), Zero)
new_abs(x0)
new_primQuotInt9(x0, x1, x2, x3)
new_gcd0Gcd'127(x0, x1, Succ(x2), Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_gcd0Gcd'118(x0, x1, Zero, Succ(x2))
new_gcd0Gcd'127(x0, x1, Succ(x2), Succ(x3))
new_primDivNatS03(x0, x1, Succ(x2), Zero)
new_gcd0Gcd'115(x0, x1)
new_gcd0Gcd'124(Succ(Succ(x0)), Succ(x1))
new_gcd25(x0, Succ(x1))
new_gcd22(Zero, Zero)
new_gcd212(x0, x1, x2, x3)
new_primDivNatS02(Succ(x0), Succ(x1))
new_primPlusNat0(Succ(x0), Succ(x1))
new_primQuotInt7(x0, Pos(Zero))
new_primDivNatS02(Zero, Succ(x0))
new_gcd0Gcd'118(x0, x1, Succ(x2), Succ(x3))
new_gcd215(x0, x1, x2, x3, x4)
new_gcd211(Pos(x0), x1, x2)
new_gcd214(Succ(x0))
new_primDivNatS2(Zero, x0)
new_gcd0Gcd'122(Succ(Zero), Zero)
new_gcd25(x0, Zero)
new_primDivNatS3(x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ MNOCProof
QDP
                                ↳ NonTerminationProof
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_numericEnumFrom(vuz3) → new_numericEnumFrom(new_ps(vuz3))

The TRS R consists of the following rules:

new_gcd217(vuz127, vuz131, vuz126, vuz130, vuz27) → new_gcd22(new_primPlusNat0(vuz127, vuz131), vuz27)
new_primPlusNat2(Zero) → Zero
new_gcd26(Succ(vuz1230), Zero, vuz42) → new_gcd27(Succ(vuz1230), vuz42)
new_primQuotInt3(Zero, Succ(vuz7100), vuz42) → new_primQuotInt7(Succ(vuz7100), new_gcd21(vuz7100, vuz42))
new_gcd0Gcd'118(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'118(vuz160, vuz161, vuz1620, vuz1630)
new_primQuotInt9(vuz67, vuz15, vuz68, vuz27) → new_primQuotInt7(new_primPlusNat0(vuz67, new_primMulNat0(vuz15)), new_reduce2D0(new_primPlusNat0(vuz67, new_primMulNat0(vuz15)), vuz27))
new_gcd22(Succ(vuz1180), Succ(vuz270)) → new_gcd0Gcd'116(vuz270, vuz1180)
new_gcd0Gcd'123(vuz151, vuz152) → new_gcd0Gcd'124(new_primMinusNatS0(Succ(vuz151), vuz152), vuz152)
new_gcd0Gcd'117(Neg(vuz1320), vuz420) → new_gcd0Gcd'124(vuz1320, vuz420)
new_ps(:%(vuz30, Neg(Zero))) → new_error0
new_gcd0Gcd'124(Succ(Zero), Zero) → new_gcd0Gcd'124(new_primMinusNatS0(Zero, Zero), Zero)
new_primMinusNatS0(Zero, Zero) → Zero
new_primDivNatS03(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS03(vuz109, vuz110, vuz1110, vuz1120)
new_primQuotInt7(vuz26, Neg(Zero)) → new_error
new_gcd0Gcd'122(Zero, vuz420) → Pos(Succ(vuz420))
new_gcd21(vuz7100, Succ(vuz420)) → new_gcd0Gcd'116(vuz420, vuz7100)
new_gcd0Gcd'127(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'123(vuz165, vuz166)
new_gcd27(Zero, Succ(vuz420)) → new_gcd0Gcd'125(vuz420)
new_gcd0Gcd'115(vuz200, vuz201) → new_gcd0Gcd'117(Neg(Succ(vuz201)), vuz200)
new_gcd213(vuz127, vuz15, vuz126, vuz27) → new_gcd217(vuz127, new_primMulNat0(vuz15), vuz126, new_primMulNat0(vuz15), vuz27)
new_primDivNatS02(Zero, Succ(vuz86000)) → Zero
new_gcd27(Succ(vuz1070), Succ(vuz420)) → new_gcd0Gcd'121(vuz420, vuz1070)
new_gcd0Gcd'121(vuz420, vuz1070) → new_gcd0Gcd'117(new_abs0(vuz1070), vuz420)
new_gcd0Gcd'127(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'123(vuz165, vuz166)
new_gcd0Gcd'112(Succ(Zero), Zero, vuz188) → new_gcd0Gcd'112(new_primMinusNatS0(Zero, Zero), Zero, new_primMinusNatS0(Zero, Zero))
new_primQuotInt5(vuz69, vuz8, vuz70, vuz42) → new_primQuotInt1(new_primPlusNat0(vuz69, new_primMulNat0(vuz8)), new_reduce2D(new_primPlusNat0(vuz69, new_primMulNat0(vuz8)), vuz42))
new_abs0(vuz6500) → Pos(Succ(vuz6500))
new_gcd0Gcd'119(vuz148, vuz149) → new_gcd0Gcd'122(new_primMinusNatS0(Succ(vuz148), vuz149), vuz149)
new_ps(:%(vuz30, Pos(Zero))) → new_error0
new_gcd22(Zero, Zero) → new_error
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)
new_primQuotInt4(Neg(vuz70), vuz8, vuz42) → new_primQuotInt2(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd25(vuz6500, Succ(vuz270)) → new_gcd0Gcd'121(vuz270, vuz6500)
new_gcd0Gcd'124(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'123(vuz132000, Zero)
new_gcd0Gcd'113(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'113(vuz203, vuz204, vuz2050, vuz2060)
new_primQuotInt3(Succ(vuz80), Zero, vuz42) → new_primQuotInt1(Succ(vuz80), new_reduce2D(Succ(vuz80), vuz42))
new_error0error([])
new_gcd0Gcd'127(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'126(Succ(vuz165), vuz166)
new_reduce2Reduce10(vuz14, vuz15, vuz27, vuz26, Zero) → new_error0
new_gcd216(Zero, Zero, vuz27) → new_gcd214(vuz27)
new_gcd0Gcd'114(vuz197, vuz198) → new_gcd0Gcd'112(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_primMulNat0(vuz8) → new_primPlusNat0(Zero, Succ(vuz8))
new_gcd0Gcd'118(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'119(vuz160, vuz161)
new_reduce2Reduce1(vuz7, vuz8, vuz42, vuz41, Succ(vuz430)) → :%(new_primQuotInt4(vuz7, vuz8, vuz42), new_primQuotInt1(vuz41, new_gcd210(vuz7, vuz8, vuz42)))
new_abs(vuz1180) → Pos(Succ(vuz1180))
new_reduce2D(vuz107, vuz42) → new_gcd27(vuz107, vuz42)
new_primQuotInt2(Succ(vuz710), vuz8, vuz72, vuz42) → new_primQuotInt3(vuz8, vuz710, vuz42)
new_gcd26(Zero, Succ(vuz1160), vuz42) → new_gcd21(vuz1160, vuz42)
new_gcd211(Neg(vuz140), vuz15, vuz27) → new_gcd213(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd211(Pos(vuz140), vuz15, vuz27) → new_gcd212(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd0Gcd'122(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'120(Zero, Succ(vuz4200))
new_gcd28(vuz114, vuz8, vuz113, vuz42) → new_gcd29(vuz114, new_primMulNat0(vuz8), vuz113, new_primMulNat0(vuz8), vuz42)
new_gcd0Gcd'124(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'126(Zero, Succ(vuz4200))
new_primDivNatS03(vuz109, vuz110, Zero, Succ(vuz1120)) → Zero
new_gcd215(vuz125, vuz129, vuz124, vuz128, vuz27) → new_gcd216(vuz125, vuz129, vuz27)
new_gcd0Gcd'122(Succ(Zero), Zero) → new_gcd0Gcd'122(new_primMinusNatS0(Zero, Zero), Zero)
new_gcd0Gcd'122(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'119(vuz132000, Zero)
new_primQuotInt2(Zero, vuz8, vuz72, vuz42) → new_primQuotInt1(Succ(vuz8), new_reduce2D(Succ(vuz8), vuz42))
new_gcd21(vuz7100, Zero) → new_abs(vuz7100)
new_primQuotInt7(vuz26, Pos(Succ(vuz11700))) → Neg(new_primDivNatS2(vuz26, vuz11700))
new_gcd27(Succ(vuz1070), Zero) → new_abs0(vuz1070)
new_primDivNatS02(Zero, Zero) → Succ(Zero)
new_gcd0Gcd'124(Zero, vuz420) → Pos(Succ(vuz420))
new_gcd216(Zero, Succ(vuz1290), vuz27) → new_gcd22(Succ(vuz1290), vuz27)
new_gcd26(Zero, Zero, vuz42) → new_gcd27(Zero, vuz42)
new_primPlusNat2(Succ(vuz1900)) → Succ(vuz1900)
new_gcd0Gcd'112(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'114(vuz18900, Zero)
new_primPlusNat1(Zero) → Succ(Zero)
new_gcd0Gcd'112(Succ(Zero), Succ(vuz1870), vuz188) → new_gcd0Gcd'115(Zero, Succ(vuz1870))
new_gcd210(Pos(vuz70), vuz8, vuz42) → new_gcd28(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd0Gcd'118(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'120(Succ(vuz160), vuz161)
new_primQuotInt6(Neg(vuz140), vuz15, vuz27) → new_primQuotInt9(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_primMulNat1(Zero) → Zero
new_primQuotInt7(vuz26, Pos(Zero)) → new_error
new_primDivNatS02(Succ(vuz850), Succ(vuz86000)) → new_primDivNatS03(vuz850, vuz86000, vuz850, vuz86000)
new_primPlusNat0(Succ(vuz6700), Succ(vuz150)) → Succ(Succ(new_primPlusNat0(vuz6700, vuz150)))
new_gcd0Gcd'127(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'127(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'116(vuz420, vuz7100) → new_gcd0Gcd'117(new_abs(vuz7100), vuz420)
new_primQuotInt3(Succ(vuz80), Succ(vuz7100), vuz42) → new_primQuotInt3(vuz80, vuz7100, vuz42)
new_gcd22(Zero, Succ(vuz270)) → new_gcd0Gcd'117(Neg(Zero), vuz270)
new_primDivNatS02(Succ(vuz850), Zero) → Succ(new_primDivNatS3(vuz850, Zero))
new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_gcd214(Succ(vuz270)) → new_gcd0Gcd'125(vuz270)
new_gcd0Gcd'112(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'113(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_primPlusNat0(Zero, Zero) → Zero
new_primDivNatS2(Zero, vuz8) → Zero
new_primQuotInt10(Zero, Zero, vuz27) → new_primQuotInt1(Zero, new_gcd214(vuz27))
new_gcd212(vuz125, vuz15, vuz124, vuz27) → new_gcd215(vuz125, new_primMulNat0(vuz15), vuz124, new_primMulNat0(vuz15), vuz27)
new_gcd27(Zero, Zero) → new_error
new_primQuotInt1(vuz41, Pos(Zero)) → new_error
new_gcd210(Neg(vuz70), vuz8, vuz42) → new_gcd23(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_primQuotInt7(vuz26, Neg(Succ(vuz11700))) → Pos(new_primDivNatS2(vuz26, vuz11700))
new_reduce2Reduce1(vuz7, vuz8, vuz42, vuz41, Zero) → new_error0
new_gcd26(Succ(vuz1230), Succ(vuz1160), vuz42) → new_gcd26(vuz1230, vuz1160, vuz42)
new_primQuotInt10(Succ(vuz6500), Zero, vuz27) → new_primQuotInt1(Succ(vuz6500), new_gcd25(vuz6500, vuz27))
new_primPlusNat1(Succ(vuz190)) → Succ(Succ(new_primPlusNat2(vuz190)))
new_primQuotInt8(Succ(vuz650), vuz15, vuz66, vuz27) → new_primQuotInt10(vuz650, vuz15, vuz27)
new_gcd0Gcd'118(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'119(vuz160, vuz161)
new_gcd216(Succ(vuz1250), Zero, vuz27) → new_gcd25(vuz1250, vuz27)
new_gcd24(vuz116, vuz123, vuz115, vuz122, vuz42) → new_gcd26(vuz123, vuz116, vuz42)
new_primMulNat1(Succ(vuz31000)) → new_primPlusNat1(new_primMulNat1(vuz31000))
new_primQuotInt3(Zero, Zero, vuz42) → new_primQuotInt1(Zero, new_reduce2D(Zero, vuz42))
new_primDivNatS3(vuz85, vuz8600) → new_primDivNatS02(vuz85, vuz8600)
new_gcd0Gcd'113(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'114(vuz203, vuz204)
new_reduce2Reduce10(vuz14, vuz15, vuz27, vuz26, Succ(vuz280)) → :%(new_primQuotInt6(vuz14, vuz15, vuz27), new_primQuotInt7(vuz26, new_gcd211(vuz14, vuz15, vuz27)))
new_ps(:%(vuz30, Neg(Succ(vuz3100)))) → new_reduce2Reduce10(vuz30, vuz3100, new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)))
new_primQuotInt1(vuz41, Neg(Succ(vuz10600))) → Neg(new_primDivNatS2(vuz41, vuz10600))
new_primQuotInt1(vuz41, Neg(Zero)) → new_error
new_primQuotInt6(Pos(vuz140), vuz15, vuz27) → new_primQuotInt8(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd0Gcd'125(vuz420) → new_gcd0Gcd'117(Pos(Zero), vuz420)
new_gcd0Gcd'124(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'127(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_errorerror([])
new_primDivNatS2(Succ(vuz410), vuz8) → new_primDivNatS02(vuz410, vuz8)
new_gcd0Gcd'113(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'114(vuz203, vuz204)
new_primQuotInt10(Zero, Succ(vuz150), vuz27) → new_primQuotInt7(Succ(vuz150), new_reduce2D0(Succ(vuz150), vuz27))
new_gcd29(vuz114, vuz121, vuz113, vuz120, vuz42) → new_gcd27(new_primPlusNat0(vuz114, vuz121), vuz42)
new_gcd22(Succ(vuz1180), Zero) → new_abs(vuz1180)
new_primDivNatS04(vuz109, vuz110) → Succ(new_primDivNatS2(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110)))
new_gcd25(vuz6500, Zero) → new_abs0(vuz6500)
new_gcd0Gcd'112(Zero, vuz187, vuz188) → Neg(Succ(vuz187))
new_gcd0Gcd'126(vuz154, vuz155) → new_gcd0Gcd'112(Succ(vuz155), vuz154, Succ(vuz155))
new_primQuotInt4(Pos(vuz70), vuz8, vuz42) → new_primQuotInt5(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd0Gcd'113(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'115(Succ(vuz203), vuz204)
new_primQuotInt10(Succ(vuz6500), Succ(vuz150), vuz27) → new_primQuotInt10(vuz6500, vuz150, vuz27)
new_primQuotInt8(Zero, vuz15, vuz66, vuz27) → new_primQuotInt7(Succ(vuz15), new_reduce2D0(Succ(vuz15), vuz27))
new_primQuotInt1(vuz41, Pos(Succ(vuz10600))) → Pos(new_primDivNatS2(vuz41, vuz10600))
new_gcd0Gcd'117(Pos(vuz1320), vuz420) → new_gcd0Gcd'122(vuz1320, vuz420)
new_gcd214(Zero) → new_error
new_primDivNatS03(vuz109, vuz110, Zero, Zero) → new_primDivNatS04(vuz109, vuz110)
new_gcd0Gcd'122(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'118(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_primPlusNat0(Zero, Succ(vuz150)) → Succ(vuz150)
new_primPlusNat0(Succ(vuz6700), Zero) → Succ(vuz6700)
new_gcd23(vuz116, vuz8, vuz115, vuz42) → new_gcd24(vuz116, new_primMulNat0(vuz8), vuz115, new_primMulNat0(vuz8), vuz42)
new_gcd0Gcd'120(vuz157, vuz158) → new_gcd0Gcd'117(Pos(Succ(vuz158)), vuz157)
new_reduce2D0(vuz118, vuz27) → new_gcd22(vuz118, vuz27)
new_gcd216(Succ(vuz1250), Succ(vuz1290), vuz27) → new_gcd216(vuz1250, vuz1290, vuz27)
new_primDivNatS03(vuz109, vuz110, Succ(vuz1110), Zero) → new_primDivNatS04(vuz109, vuz110)
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_ps(:%(vuz30, Pos(Succ(vuz3100)))) → new_reduce2Reduce1(vuz30, vuz3100, new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)))

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_numericEnumFrom(vuz3) → new_numericEnumFrom(new_ps(vuz3))

The TRS R consists of the following rules:

new_gcd217(vuz127, vuz131, vuz126, vuz130, vuz27) → new_gcd22(new_primPlusNat0(vuz127, vuz131), vuz27)
new_primPlusNat2(Zero) → Zero
new_gcd26(Succ(vuz1230), Zero, vuz42) → new_gcd27(Succ(vuz1230), vuz42)
new_primQuotInt3(Zero, Succ(vuz7100), vuz42) → new_primQuotInt7(Succ(vuz7100), new_gcd21(vuz7100, vuz42))
new_gcd0Gcd'118(vuz160, vuz161, Succ(vuz1620), Succ(vuz1630)) → new_gcd0Gcd'118(vuz160, vuz161, vuz1620, vuz1630)
new_primQuotInt9(vuz67, vuz15, vuz68, vuz27) → new_primQuotInt7(new_primPlusNat0(vuz67, new_primMulNat0(vuz15)), new_reduce2D0(new_primPlusNat0(vuz67, new_primMulNat0(vuz15)), vuz27))
new_gcd22(Succ(vuz1180), Succ(vuz270)) → new_gcd0Gcd'116(vuz270, vuz1180)
new_gcd0Gcd'123(vuz151, vuz152) → new_gcd0Gcd'124(new_primMinusNatS0(Succ(vuz151), vuz152), vuz152)
new_gcd0Gcd'117(Neg(vuz1320), vuz420) → new_gcd0Gcd'124(vuz1320, vuz420)
new_ps(:%(vuz30, Neg(Zero))) → new_error0
new_gcd0Gcd'124(Succ(Zero), Zero) → new_gcd0Gcd'124(new_primMinusNatS0(Zero, Zero), Zero)
new_primMinusNatS0(Zero, Zero) → Zero
new_primDivNatS03(vuz109, vuz110, Succ(vuz1110), Succ(vuz1120)) → new_primDivNatS03(vuz109, vuz110, vuz1110, vuz1120)
new_primQuotInt7(vuz26, Neg(Zero)) → new_error
new_gcd0Gcd'122(Zero, vuz420) → Pos(Succ(vuz420))
new_gcd21(vuz7100, Succ(vuz420)) → new_gcd0Gcd'116(vuz420, vuz7100)
new_gcd0Gcd'127(vuz165, vuz166, Zero, Zero) → new_gcd0Gcd'123(vuz165, vuz166)
new_gcd27(Zero, Succ(vuz420)) → new_gcd0Gcd'125(vuz420)
new_gcd0Gcd'115(vuz200, vuz201) → new_gcd0Gcd'117(Neg(Succ(vuz201)), vuz200)
new_gcd213(vuz127, vuz15, vuz126, vuz27) → new_gcd217(vuz127, new_primMulNat0(vuz15), vuz126, new_primMulNat0(vuz15), vuz27)
new_primDivNatS02(Zero, Succ(vuz86000)) → Zero
new_gcd27(Succ(vuz1070), Succ(vuz420)) → new_gcd0Gcd'121(vuz420, vuz1070)
new_gcd0Gcd'121(vuz420, vuz1070) → new_gcd0Gcd'117(new_abs0(vuz1070), vuz420)
new_gcd0Gcd'127(vuz165, vuz166, Succ(vuz1670), Zero) → new_gcd0Gcd'123(vuz165, vuz166)
new_gcd0Gcd'112(Succ(Zero), Zero, vuz188) → new_gcd0Gcd'112(new_primMinusNatS0(Zero, Zero), Zero, new_primMinusNatS0(Zero, Zero))
new_primQuotInt5(vuz69, vuz8, vuz70, vuz42) → new_primQuotInt1(new_primPlusNat0(vuz69, new_primMulNat0(vuz8)), new_reduce2D(new_primPlusNat0(vuz69, new_primMulNat0(vuz8)), vuz42))
new_abs0(vuz6500) → Pos(Succ(vuz6500))
new_gcd0Gcd'119(vuz148, vuz149) → new_gcd0Gcd'122(new_primMinusNatS0(Succ(vuz148), vuz149), vuz149)
new_ps(:%(vuz30, Pos(Zero))) → new_error0
new_gcd22(Zero, Zero) → new_error
new_primMinusNatS0(Succ(vuz1090), Zero) → Succ(vuz1090)
new_primQuotInt4(Neg(vuz70), vuz8, vuz42) → new_primQuotInt2(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd25(vuz6500, Succ(vuz270)) → new_gcd0Gcd'121(vuz270, vuz6500)
new_gcd0Gcd'124(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'123(vuz132000, Zero)
new_gcd0Gcd'113(vuz203, vuz204, Succ(vuz2050), Succ(vuz2060)) → new_gcd0Gcd'113(vuz203, vuz204, vuz2050, vuz2060)
new_primQuotInt3(Succ(vuz80), Zero, vuz42) → new_primQuotInt1(Succ(vuz80), new_reduce2D(Succ(vuz80), vuz42))
new_error0error([])
new_gcd0Gcd'127(vuz165, vuz166, Zero, Succ(vuz1680)) → new_gcd0Gcd'126(Succ(vuz165), vuz166)
new_reduce2Reduce10(vuz14, vuz15, vuz27, vuz26, Zero) → new_error0
new_gcd216(Zero, Zero, vuz27) → new_gcd214(vuz27)
new_gcd0Gcd'114(vuz197, vuz198) → new_gcd0Gcd'112(new_primMinusNatS0(Succ(vuz197), vuz198), vuz198, new_primMinusNatS0(Succ(vuz197), vuz198))
new_primMulNat0(vuz8) → new_primPlusNat0(Zero, Succ(vuz8))
new_gcd0Gcd'118(vuz160, vuz161, Zero, Zero) → new_gcd0Gcd'119(vuz160, vuz161)
new_reduce2Reduce1(vuz7, vuz8, vuz42, vuz41, Succ(vuz430)) → :%(new_primQuotInt4(vuz7, vuz8, vuz42), new_primQuotInt1(vuz41, new_gcd210(vuz7, vuz8, vuz42)))
new_abs(vuz1180) → Pos(Succ(vuz1180))
new_reduce2D(vuz107, vuz42) → new_gcd27(vuz107, vuz42)
new_primQuotInt2(Succ(vuz710), vuz8, vuz72, vuz42) → new_primQuotInt3(vuz8, vuz710, vuz42)
new_gcd26(Zero, Succ(vuz1160), vuz42) → new_gcd21(vuz1160, vuz42)
new_gcd211(Neg(vuz140), vuz15, vuz27) → new_gcd213(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd211(Pos(vuz140), vuz15, vuz27) → new_gcd212(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd0Gcd'122(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'120(Zero, Succ(vuz4200))
new_gcd28(vuz114, vuz8, vuz113, vuz42) → new_gcd29(vuz114, new_primMulNat0(vuz8), vuz113, new_primMulNat0(vuz8), vuz42)
new_gcd0Gcd'124(Succ(Zero), Succ(vuz4200)) → new_gcd0Gcd'126(Zero, Succ(vuz4200))
new_primDivNatS03(vuz109, vuz110, Zero, Succ(vuz1120)) → Zero
new_gcd215(vuz125, vuz129, vuz124, vuz128, vuz27) → new_gcd216(vuz125, vuz129, vuz27)
new_gcd0Gcd'122(Succ(Zero), Zero) → new_gcd0Gcd'122(new_primMinusNatS0(Zero, Zero), Zero)
new_gcd0Gcd'122(Succ(Succ(vuz132000)), Zero) → new_gcd0Gcd'119(vuz132000, Zero)
new_primQuotInt2(Zero, vuz8, vuz72, vuz42) → new_primQuotInt1(Succ(vuz8), new_reduce2D(Succ(vuz8), vuz42))
new_gcd21(vuz7100, Zero) → new_abs(vuz7100)
new_primQuotInt7(vuz26, Pos(Succ(vuz11700))) → Neg(new_primDivNatS2(vuz26, vuz11700))
new_gcd27(Succ(vuz1070), Zero) → new_abs0(vuz1070)
new_primDivNatS02(Zero, Zero) → Succ(Zero)
new_gcd0Gcd'124(Zero, vuz420) → Pos(Succ(vuz420))
new_gcd216(Zero, Succ(vuz1290), vuz27) → new_gcd22(Succ(vuz1290), vuz27)
new_gcd26(Zero, Zero, vuz42) → new_gcd27(Zero, vuz42)
new_primPlusNat2(Succ(vuz1900)) → Succ(vuz1900)
new_gcd0Gcd'112(Succ(Succ(vuz18900)), Zero, vuz188) → new_gcd0Gcd'114(vuz18900, Zero)
new_primPlusNat1(Zero) → Succ(Zero)
new_gcd0Gcd'112(Succ(Zero), Succ(vuz1870), vuz188) → new_gcd0Gcd'115(Zero, Succ(vuz1870))
new_gcd210(Pos(vuz70), vuz8, vuz42) → new_gcd28(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd0Gcd'118(vuz160, vuz161, Zero, Succ(vuz1630)) → new_gcd0Gcd'120(Succ(vuz160), vuz161)
new_primQuotInt6(Neg(vuz140), vuz15, vuz27) → new_primQuotInt9(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_primMulNat1(Zero) → Zero
new_primQuotInt7(vuz26, Pos(Zero)) → new_error
new_primDivNatS02(Succ(vuz850), Succ(vuz86000)) → new_primDivNatS03(vuz850, vuz86000, vuz850, vuz86000)
new_primPlusNat0(Succ(vuz6700), Succ(vuz150)) → Succ(Succ(new_primPlusNat0(vuz6700, vuz150)))
new_gcd0Gcd'127(vuz165, vuz166, Succ(vuz1670), Succ(vuz1680)) → new_gcd0Gcd'127(vuz165, vuz166, vuz1670, vuz1680)
new_gcd0Gcd'116(vuz420, vuz7100) → new_gcd0Gcd'117(new_abs(vuz7100), vuz420)
new_primQuotInt3(Succ(vuz80), Succ(vuz7100), vuz42) → new_primQuotInt3(vuz80, vuz7100, vuz42)
new_gcd22(Zero, Succ(vuz270)) → new_gcd0Gcd'117(Neg(Zero), vuz270)
new_primDivNatS02(Succ(vuz850), Zero) → Succ(new_primDivNatS3(vuz850, Zero))
new_primMinusNatS0(Zero, Succ(vuz1100)) → Zero
new_gcd214(Succ(vuz270)) → new_gcd0Gcd'125(vuz270)
new_gcd0Gcd'112(Succ(Succ(vuz18900)), Succ(vuz1870), vuz188) → new_gcd0Gcd'113(vuz18900, Succ(vuz1870), vuz18900, vuz1870)
new_primPlusNat0(Zero, Zero) → Zero
new_primDivNatS2(Zero, vuz8) → Zero
new_primQuotInt10(Zero, Zero, vuz27) → new_primQuotInt1(Zero, new_gcd214(vuz27))
new_gcd212(vuz125, vuz15, vuz124, vuz27) → new_gcd215(vuz125, new_primMulNat0(vuz15), vuz124, new_primMulNat0(vuz15), vuz27)
new_gcd27(Zero, Zero) → new_error
new_primQuotInt1(vuz41, Pos(Zero)) → new_error
new_gcd210(Neg(vuz70), vuz8, vuz42) → new_gcd23(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_primQuotInt7(vuz26, Neg(Succ(vuz11700))) → Pos(new_primDivNatS2(vuz26, vuz11700))
new_reduce2Reduce1(vuz7, vuz8, vuz42, vuz41, Zero) → new_error0
new_gcd26(Succ(vuz1230), Succ(vuz1160), vuz42) → new_gcd26(vuz1230, vuz1160, vuz42)
new_primQuotInt10(Succ(vuz6500), Zero, vuz27) → new_primQuotInt1(Succ(vuz6500), new_gcd25(vuz6500, vuz27))
new_primPlusNat1(Succ(vuz190)) → Succ(Succ(new_primPlusNat2(vuz190)))
new_primQuotInt8(Succ(vuz650), vuz15, vuz66, vuz27) → new_primQuotInt10(vuz650, vuz15, vuz27)
new_gcd0Gcd'118(vuz160, vuz161, Succ(vuz1620), Zero) → new_gcd0Gcd'119(vuz160, vuz161)
new_gcd216(Succ(vuz1250), Zero, vuz27) → new_gcd25(vuz1250, vuz27)
new_gcd24(vuz116, vuz123, vuz115, vuz122, vuz42) → new_gcd26(vuz123, vuz116, vuz42)
new_primMulNat1(Succ(vuz31000)) → new_primPlusNat1(new_primMulNat1(vuz31000))
new_primQuotInt3(Zero, Zero, vuz42) → new_primQuotInt1(Zero, new_reduce2D(Zero, vuz42))
new_primDivNatS3(vuz85, vuz8600) → new_primDivNatS02(vuz85, vuz8600)
new_gcd0Gcd'113(vuz203, vuz204, Zero, Zero) → new_gcd0Gcd'114(vuz203, vuz204)
new_reduce2Reduce10(vuz14, vuz15, vuz27, vuz26, Succ(vuz280)) → :%(new_primQuotInt6(vuz14, vuz15, vuz27), new_primQuotInt7(vuz26, new_gcd211(vuz14, vuz15, vuz27)))
new_ps(:%(vuz30, Neg(Succ(vuz3100)))) → new_reduce2Reduce10(vuz30, vuz3100, new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)))
new_primQuotInt1(vuz41, Neg(Succ(vuz10600))) → Neg(new_primDivNatS2(vuz41, vuz10600))
new_primQuotInt1(vuz41, Neg(Zero)) → new_error
new_primQuotInt6(Pos(vuz140), vuz15, vuz27) → new_primQuotInt8(new_primMulNat1(vuz140), vuz15, new_primMulNat1(vuz140), vuz27)
new_gcd0Gcd'125(vuz420) → new_gcd0Gcd'117(Pos(Zero), vuz420)
new_gcd0Gcd'124(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'127(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_errorerror([])
new_primDivNatS2(Succ(vuz410), vuz8) → new_primDivNatS02(vuz410, vuz8)
new_gcd0Gcd'113(vuz203, vuz204, Succ(vuz2050), Zero) → new_gcd0Gcd'114(vuz203, vuz204)
new_primQuotInt10(Zero, Succ(vuz150), vuz27) → new_primQuotInt7(Succ(vuz150), new_reduce2D0(Succ(vuz150), vuz27))
new_gcd29(vuz114, vuz121, vuz113, vuz120, vuz42) → new_gcd27(new_primPlusNat0(vuz114, vuz121), vuz42)
new_gcd22(Succ(vuz1180), Zero) → new_abs(vuz1180)
new_primDivNatS04(vuz109, vuz110) → Succ(new_primDivNatS2(new_primMinusNatS0(vuz109, vuz110), Succ(vuz110)))
new_gcd25(vuz6500, Zero) → new_abs0(vuz6500)
new_gcd0Gcd'112(Zero, vuz187, vuz188) → Neg(Succ(vuz187))
new_gcd0Gcd'126(vuz154, vuz155) → new_gcd0Gcd'112(Succ(vuz155), vuz154, Succ(vuz155))
new_primQuotInt4(Pos(vuz70), vuz8, vuz42) → new_primQuotInt5(new_primMulNat1(vuz70), vuz8, new_primMulNat1(vuz70), vuz42)
new_gcd0Gcd'113(vuz203, vuz204, Zero, Succ(vuz2060)) → new_gcd0Gcd'115(Succ(vuz203), vuz204)
new_primQuotInt10(Succ(vuz6500), Succ(vuz150), vuz27) → new_primQuotInt10(vuz6500, vuz150, vuz27)
new_primQuotInt8(Zero, vuz15, vuz66, vuz27) → new_primQuotInt7(Succ(vuz15), new_reduce2D0(Succ(vuz15), vuz27))
new_primQuotInt1(vuz41, Pos(Succ(vuz10600))) → Pos(new_primDivNatS2(vuz41, vuz10600))
new_gcd0Gcd'117(Pos(vuz1320), vuz420) → new_gcd0Gcd'122(vuz1320, vuz420)
new_gcd214(Zero) → new_error
new_primDivNatS03(vuz109, vuz110, Zero, Zero) → new_primDivNatS04(vuz109, vuz110)
new_gcd0Gcd'122(Succ(Succ(vuz132000)), Succ(vuz4200)) → new_gcd0Gcd'118(vuz132000, Succ(vuz4200), vuz132000, vuz4200)
new_primPlusNat0(Zero, Succ(vuz150)) → Succ(vuz150)
new_primPlusNat0(Succ(vuz6700), Zero) → Succ(vuz6700)
new_gcd23(vuz116, vuz8, vuz115, vuz42) → new_gcd24(vuz116, new_primMulNat0(vuz8), vuz115, new_primMulNat0(vuz8), vuz42)
new_gcd0Gcd'120(vuz157, vuz158) → new_gcd0Gcd'117(Pos(Succ(vuz158)), vuz157)
new_reduce2D0(vuz118, vuz27) → new_gcd22(vuz118, vuz27)
new_gcd216(Succ(vuz1250), Succ(vuz1290), vuz27) → new_gcd216(vuz1250, vuz1290, vuz27)
new_primDivNatS03(vuz109, vuz110, Succ(vuz1110), Zero) → new_primDivNatS04(vuz109, vuz110)
new_primMinusNatS0(Succ(vuz1090), Succ(vuz1100)) → new_primMinusNatS0(vuz1090, vuz1100)
new_ps(:%(vuz30, Pos(Succ(vuz3100)))) → new_reduce2Reduce1(vuz30, vuz3100, new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)), new_primPlusNat1(new_primMulNat1(vuz3100)))


s = new_numericEnumFrom(vuz3) evaluates to t =new_numericEnumFrom(new_ps(vuz3))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_numericEnumFrom(vuz3) to new_numericEnumFrom(new_ps(vuz3)).




Haskell To QDPs